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Eq. (39) is rather curious and we have been unable to
attach any particular signiicance to it.""

The diGerences between spinless and spin--,' con-
stituents are impressive. In particular, while in the
spinless case binding by a regular potential meant
superconvergence, it is not so for the spin--,' case. An

"We do not know whether the possible existence of J=O
singularities in the Iplane (Ref. 39) for more sophisticated models
can invalidate the composite-particle interpretation of the bound-
state solution studied above.

'9 See, e.g., S. Mandelstam and L. L. Wang, Phys. Rev. 160,
1490 (1967), and references therein.

indication of superconvergence or of (1/qz)s behavior of
the pion form factor, would imply that either the inter-
action is strongly regularized by some mechanism
(e.g. , bootstrap), or that the high-energy model we
used is wrong.
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In this paper we study the reactions zv~ z.co(1 ), 7m z.Az(2+), and nz ~ z.coz(3 ) as a bootstrap
system for natural-parity trajectories. We start from the solution of our previous work that gave, among
other results, expressions for the trajectory and residue functions as well as mass formulas, in agreement
with experiment. Here we study in detail the sum rules as a function of momentum transfer t. We find a set
of residue functions P (t) that are self-consistent and such that the Regge and resonance sides of the equations
are almost equal in a large region of t. We study also a step-by-step approximation that, at each stage,
enlarges the region where the equations are valid. We find, however, that the leading Regge trajectories,
even if infinitely rising, cannot bootstrap themselves. We outline two possible (not incompatible) ways of
implementing the bootstrap. The first way demands an optimized choice of the cuto6 parameter and
considers the whole family of reactions 7rz ~ nXs (Xs being a normal-parity state of spin I).Our results
for J(3 show that this is a definite possibility. The second way is to consider a whole family (parent and
daughters) as participating in the bootstrap. We find this possibility also attractive, and as a consequence
we find that daughters must be parallel to the parent, for linear trajectories. The properties of our para-
metrization are also discussed —in particular, the Khuri paradox and the coupling of high-spin resonances
to the system. We also compare our results with experiment whenever possible. Our A& trajectory, for
instance, follows the Gell-Mann mechanism, and the exponential t dependence of our residue functions is
perfectly consistent with the one found in recent phenomenological fits to inelastic reactions.

1. INTRODUCTION

'T seems that a very promising attempt in elementary-
' ~ particle theory today can be found in blending the
general principles of 5-matrix theory, embodied in

analyticity, crossing, and unitarity, with the dynamical
elements contained in Regge-pole theory. The resulting
scheme will, it is hoped, put strong enough restrictions
on the scattering amplitudes that the Regge trajectories
and their residue functions will be uniquely determined.
As a consequence, the spectrum of particles and their

*Work supported in part by the U. S. Ofhce of Naval Research
under Contract No. Nonr-1866(55) and by the U. S. Air Force
under Contract No. 49 (638)-1380.

f On leave of absence from Istituto di Fisica dell'Universit6,
Firenze, Italy.

f On leave of absence at New York University, N. Y.
)On leave of absence at M.I.T., Cambridge, Mass.

( Present address: University of Wisconsin, Madison, Wis.

couplings will be completely determined and their
bootstrap accomplished.

A large number of papers, dealing with the question of
analyticity at t=0 when the external masses are not
equal, have shown that Regge trajectories must appear
in families. ' The Regge functions of the members of the
family must obey relations at this point but are undeter-
mined elsewhere. These results have been reached by
means of powerful group-theoretical techniques by
Toiler and collaborators' and by Freedman and Wang. '
A few models have also been solved in some approxima-
tion, as the Van Hove model' and the Bethe-Salpeter

' D. S. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
'M. Toiler, Nuovo Cimento 53A, 671 (1968), and references

therein.
' D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).' R. L. Sugar and J. D. Sullivan, Phys. Rev. 166, 1515 (1968).
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equation, that give information at t/0 as well. This
requirement of analyticity hints that a complete boot-
strap scheme can be achieved only if at least a family
of trajectories is taken into account.

A somewhat more phenomenological approach was
started by De Alfaro et al. ' when they discovered super-
convergence relations and proposed their use in particle
physics. Their observation is as follows: If for a process
the t-channel helicity Qip is suIIiciently large, and the
internal quantum numbers are such that the leading
Regge trajectory is below' some given value, the cor-
responding invariant amplitude A obeys a sum rule of
the form

ImA(o, t)do=0,

where v= sr(s —sc), and s, t, and u are the Mandelstam
variables. Equation (1.1) follows from analyticity and
Regge asymptotic behavior and the evaluation of the
integral can be performed by means of unitarity. In Ref.
6 and in subsequent papers" ImA was approximated by
a few low-lying resonances, so that the equations re-
sulted in relations among the parameters of s- and
I-channel resonances.

Equation (1.1), as such, is a mathematical con-
sequence of the general assumptions we made at the
start. It only becomes physically relevant when some
prescription, like the above-mentioned one, is given to
calculate the integral: this is called in the literature the
saturation problem. Saturation in terms of a finite
number of resonances has been shown to lead to dif-
ficulties' when the equations are required to be exactly
satisfied in a certain range of t.

In order to avoid this problem, we have proposed,
more recently, ' a different type of saturation philosophy
in which the high-energy part of Eq. (1.1) was explicitly
taken into account by use of Regge theory. No inter-
ference was allowed (in the imaginary part of the ampli-
tude) between the low-energy resonances and the high-
energy part represented by Regge trajectories. Such a
philosophy provides for a method of analytic con-
tinuation of Eq. (1.1) to values of t where the integral
is meaningless. This analytic continuation had been
previously derived by subtracting the asymptotic limit
from the amplitude and writing Eq. (1.1) for the dif-
ference. This last method, first proposed by Igi,"was
rediscovered by many authors" and fully exploited by

' A. R. Swift, Phys. Rev. Letters 18, 813 (1967).
6 V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.

Letters 21, 576 (1966).
r See for example F.Low, Berketey Conference Report (University

of California Press, Berkeley, 1966).
8 This was noticed by S. Fubini et al. , Report to the Coral Cables

Conference 1967 (University of Miami Press, Miami, Fla. ,1968).
BM. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A.

Virasoro, Nuovo Cimento 51A, 227 (1967).
'0 K. Igi, Phys. Rev. Letters 9, 76 (1962)."K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967);

L. D. Soloviev, A. A. Logunov, and A. N. Tavkhelidze, Phys.
Letters 24$, 181 (1967); D. Horn and C. Schmid (unpublished);
R. Gatto, Phys. Rev. Letters 18, 803 (1967).

v" ImA(o, t)do=+P„(t)
cr„+n+ I

where Regge theory demands

ImA(o, t) -+ Q„P„(t)v

(1.2)

(1.3)

In a few cases, like zS scattering, the experimental
data from both low-energy and high-energy 6ts can be
used directly to check the equations. A more interesting
application is to use the low-energy data as an input to
predict the relevant parameters of high-energy scatter-
ing, like the leading Regge trajectory. This has been
done in Ref. 12 for x'V charge-exchange scattering. The
results of the thorough analysis of Dolen, Horn, and
Schmidt not only showed an excellent agreement with
experiment but also made evident a rather surprising
property of the Regge representation, viz. , while the
physical amplitude begins to differ from the Regge term
as soon as important enough resonance appear in the
direct channel, the local average of the amplitude coin-
cides with the extrapolation of the Regge term up to
much lower energies. Since what we need in the sum
rule (for low moments) is only the average of the ampli-
tude, this property permits us to cut the integral at
rather low energies, thus opening a number of possible
applications.

Another way of exploiting the above equations, which
is more theoretical and certainly very attractive, is the
one we call the "bootstrap" of Regge trajectories. The
general idea of this approach is that, for some particular
reaction, the amplitude in the resonance region of the
direct channel can be obtained by use of crossing as the
analytic continuation of the Regge amplitude describ-
ing scattering at high energy in the crossed channel. The
essence of the problem lies therefore in finding a tra-
jectory and residue function that when introduced as
input reproduces itself consistently. Also one must find
a parametrization of the scattering amplitude which
obeys the constraints of analyticity, unitarity, and
crossing symmetry. The simplest model of such a theory
is the one based on the narrow-resonance approxima-
tion and, consistently, on real rising Regge trajectories.
In this frame Eqs. (1.1-2) provide us with a set of
algebraic relations in terms of Regge parameters only.
This model has also been proposed by Mandelstam"
and has been 6rst exploited by the authors'4" in two

'~ R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19,
402 (1967);Phys. Rev. 166, 1772 (1968)."S. Mandelstam, Phys. Rev. 166, 1539 (1968).

'4 M. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A.
Virasoro, Phys. Rev. Letters 19, 1402 (1967).

~~ M. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A.
Virasoro, Phys. Letters 27$, 99 (1968).

re C. Schmid, Phys. Rev. Letters 20, 628 (1968); P. G. O.
Freund, ibid. 20 235 (1968}; C. Schmid and J. Yellin, Phys.
Letters 27B, 19 (1968); M. Bishari, H. R. Rubinstein, A. Schwim-
mer, and G. Veneziano, following paper, 176, 1926 (1968),

Dolen, Horn, and Schmid" in their "finite-energy sum
rules. "These new sum rules have the form

pat+n+1
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particularly convenient classes of mesonic reactions and
further extended to other mesonic processes by other
gl oups.

It turns out that, for a bootstrap program, meson
systems are more advantageous than baryonic ones.
Since experimental scattering information, as such, is
unavailable, some definite saturation assumption is
needed. Nevertheless, the price is worth the advantages
because, in the new bootstrap, the meson system (i)
can be thought of as essentially decoupled from the
baryon system, (ii) possesses often very strong sym-
metries in the three channels (a situation that can never
occur with baryons), and (iii) by appropriate choice of
reaction one can suppress the type and number of
intermediate states that can contribute. This is be-
cause in the reactions chosen there are charge-conjuga-
tion and parity-selection rules. The saturation hy-
potheses of our program are the following: The absorp-
tive part of meson-meson scattering amplitudes can be
represented in the following way:

(a) Lore energy: The contribution of a few resonant
states is dominant and the background is negligible.

(b) High energy: The amplitude is controlled by a
few' Regge trajectories.

(c) Intermediate energy: We use the property that
the extrapolated Regge tail is equal to the averaged
amplitude (the so-called new interference model" ).

Our general investigations will be mainly performed
on the reaction a-7r —+ a-ce (Secs. 2 and 3) which proved
to be a very clean and useful theoretical laboratory.
We include, in successive stages of approximations,
more and more resonances as intermediate states.
Accordingly we have to increase the value of the cutoff
parameter P.

We first saturate the sum rules by means of the p
meson alone, 6nding very good agreement for the 3

dependence provided that the cutoff P is chosen mid-
way between the p and the 6rst resonance to be left
out (ps.'Ji'=3 ). We then include the 3 state, varying
the cutoff consistently, and the agreement is found to
be good (and even better) in a much larger region of 1

without having any free parameter at our disposal.
However, further displacement of the cutoff leads into

difhculties; the resonances cannot balance the Regge
term anymore.

We conclude that it is impossible for the leading tra-
jectory alone to provide enough strength to the integral
by means of its own resonances. This is in agreement
with the experimental observation that high-spin reso-
nances are essentially only coupled to neighboring
states in angular momentum. '~

In this paper we investigate two possible and not
necessarily incompatible ways out of this problem.

The 6rst consists in looking for a general solution in

'r G. F. Chew, 1967 Report to the Solvay Conference (to be
published).

which an entire family of Regge trajectories is involved
(parent plus daughters). We find parallelism of daughter
trajectories, at least in the approximation of a linear
parent trajectory. The result has been also confirmed"
by use of the partial-wave projection of the Regge term,
recently proposed by Schmid. "A positive discovery in
this approach is the possibility of getting good agree-
ment in a range of t. This stems from the observation
that, while the Regge term is a transcendental function
and the contribution of resonances is a polynomial, in
each step of approximation the first can be factorized
into two functions. One is almost exactly constant in a
range of t going from u(t;„)= —J to u(t )=+J (J
being the spin of the last resonance included); the other
is a polynomial of the same order as that coming from
the resonances. Furthermore, the coeKcients of the
highest powers in t are the same on both sides of the
equations and the difference may be filled by lower-spin
resonances.

The second approach, proposed in Ref. 15, stemmed
from the observation that saturation by resonances
seems to be a good approximation at low energies but.
that no evidence for such saturation exists for inter-
mediate and higher energies.

Consequently, it seems that use of a rather low value
of the cutoff parameter of the integral might be the
most adequate.

To study the pieces of the trajectory linked to high-
spin states, we then suggested raising the external spin
as well. "We develop this idea in this paper by con-
sidering reactions of the form a.+a.—+7r+t, where J
goes up to three (see Secs. 2, 4, and 5).

We have then in principle an iteration procedure to
compute scattering amplitudes that, with the afore-
mentioned saturation assumptions, transforms into an
appealing set of equations providing relations for the
parameters of the s, t, and I channels. By use of crossing
symmetry they appear related once more and the self-
consistency or bootstrap is achieved so that in principle
we can predict intercepts and slopes of trajectories as
well as ratios of their residue functions. The procedure
is both strongly predictive and successful, thus con-
firming the practicability of the program and the hy-
pothesis underlying it. In particular, it gives strong
evidence for the following conclusions:

(a) Our amplitudes are well represented by a few
resonances at low energy. One should remember, how-
ever, that the examples we considered are reactions
where the Pomeranchuk does not contribute and there
is no s wave. In fact, there is some evidence that in
these two cases resonances may not saturate the sum.
rules well. "(b) Validity of the local-average hypothesis,
i.e., that the extrapolated Regge term is equal to an
average of the physical amplitude. This hypothesis has,

'8 H. R. Rubinstein, A, Schvvimmer, G. Veneziano, and M. A,
Virasoro, Phys. Rev. Letters 21, 491 (1968).' C. Schmid, Phys. Rev. Letters 20, 689 ($968)."H. Harari, Phys. Rev. Letters 20, 1395 (1968).
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been recently applied by Chew and Pignotti" to the
relation between the Deck eBect and the A» resonance.
In this respect we should like to stress that local aver-
age does not imply Schwarz sum rules. 2' In fact the
local average suggests that the sum rules (2) hold
separately for the positive and negative regions of v.

Note, however, that the low positive region of v may
very well include some (below threshold) I-channel
resonances. A striking example is the I=2, xp super-
convergence sum rule considered in Ref. 22. In that
example the local average holds but the Schwarz sum
rules are badly violated.

The paper is organized in the following way:
Section 2 studies in detail the reaction xx —+vcr.

Most of the section deals with the 6rst-moment sum
rule, where we consider in detail the problems mentioned
above. At the end of the section we also discuss Schwarz
sum rules" and higher-moment sum rules. The former
ones are violated. , indicating the existence of a 6xed
pole. However, this 6xed pole should be additive in
order to keep the dip mechanism effective. "

In Sec. 3 we study the problems posed by the t de-
pendence of the residue function P(t).

In particular we study (a) the 1 dependence of our
model and how it compares with experiment (we find
reasonable agreement for positive and negative t), (b)
the mechanisms followed by our trajectories at sense-
nonsense points of both signatures (we find the Gell-
Mann mechanism), (c) the restrictions found by Khuri
on these functions [our P(t) obeys them), and (d) the
re1ation of our parametrization to the one chosen by
Mandelstam. "We use different asymptotic variables
and a different choice of the scale factor, implying a
different t dependence.

In Sec. 4 we study the reaction ~m ~mA2. This re-
action contains new features due to the appearance of
two independent helicity amplitudes. We apply the same
technique of the previous section and we saturate the
system up to and including presumed states of spin 4,
finding again a very good solution for a large region of t.
We discuss the problem of choices between helicity and
invariant amplitudes and show the advantages of the
latter choice.

In Sec. 5 we go a step further and consider the hy-
pothetical reaction s.z.~ sais(3 ), assuming that meson
trajectories are parallel and that such a particle'exists.
Results are good and couplings of this state are predicted.

Section 6 deals with a summary of the results and a
general outlook.

In Appendix A we discuss in detail, in the SU(3)
limit, the derivation of the sum rules for PP —+PV
and PP —+PT presented in the previous work. ""

"G. F. Chew and A. Pignotti, Phys. Rev. Letters 20' 1078
(2968}."J.H. Schwarz, Phys. Rev. 159, 1269 (1967l."A detailed study of this problem has been performed by
R. Roskies (to be published). We thank him for interesting
dkscuss&ons.

Fxo. 1. Kinematics of all processes
considered in the paper.

Finally, in Appendix B we give the detailed computa-
tion of the contribution of resonances up to spin 4 to
one of the sum rules that hold for xx ~mA~. scattering

2. REACTION me~ mu

((n) = Li—e—' &'&j/sins. n(1) . (2.3)

We shall also parametrize the residue function P(1)
in the form

O(1)=P(1)/I'( (1)) (2.4)

where P(t) is an entire function of t. This choice is by
no means arbitrary and it is in fact necessitated if the
correct Reggeization of amplitudes is to be accomplished
without spurious singularities. '4 Notice that our
parametrization carries an exponential dependence in t
through the scale factor v~. Since the I' function takes
care of the appropriate kinematical factors, it will be

~4%e have explicitly checked our amplitudes following the
method of G. Cohen-Tannoudji, A. Morel, and H. Wavelet,
Ann. Phys. (¹Y.) 46, 239 (1968).

A most suitable reaction providing for a "bootstrap"
of the p trajectory is m.x ~ xor. In this section we discuss
this example in full detail.

The T matrix for this process is described in terms of
a single invariant amplitude A (v, t), defined through

T &= e e,e„„v.e„'"'I'g„I'zvt's, A (v, t), (2.1)

where the momenta and isospin indices of the pions
are taken as in Fig. 1. A more detailed discussion of
this amplitude is given in Appendix A.

The most remarkable property of this reaction is
that it selects, among the possible single particles and
Regge poles that can be exchanged in all channels,
these corresponding to negative signature, I= 1, 6=+1,
and normal-parity trajectories. The fact that it is an
inelastic reaction is unimportant in this bootstrap
theory. We first assume that one single trajectory with
these properties controls the high-energy scattering.
Since the results are that its intercept at (=0 is about —',
and the slope is about 1 BeV ',we identify it with the p
trajectory. The low-energy absorptive part is assumed
in the beginning to be dominated by the exchange in the
s and I channels of the particles" lying on this same
trajectory.

The contribution of the leading Regge pole to the
amplitude will be parametrized for high v and 6xed t as

(2.2)

where
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-25 -2
I I

.55

+2
I

t(BeV'~ j.
v= ( n+ )et 0(e(4t

4o.'
(2 g)

Irrespective of the values of v and vt, Eq. (2.6) predicts
a zero on the right-hand side at t= —2m, '+Z= —0.53
BeV'. The natural explanation of course is the zero of
o. that is responsible for the dip in mE charge exchange
scattering. This was the main result of Ref. 14.25 Since
our equations are homogeneous, P drops out. Moreover
we set

where e expresses the range of possible values for v.

Equation (2.6) then reads

Fn. 2. Saturation of the 7i-7t-~ +co sum rules with the p reso-
nance alone. Dashed line represents the resonance side and full
line the Regge side. Ordinates in arbitrary units.

v, = [n(t)/4n'lC t(n, e)(k/2)

where we have introduced

C't(n, e)=(sn+se) "'I' '(n+2).

(2 9)

(2.10)

often assumed in the following that the function P(f) is
a constant in the interval of t in which we are imple-
menting the saturation. This is of course a dynamical
assumption.

We use v as the asymptotic variable, keeping in this
way the s, n symmetry of the problem at every step.
Regge behavior and analyticity requirements allow one
to write the following family of sum rules:

P(f) v ~
a(t)—1

v" ImA (v,t) dv = — —
~

v"+'. (2.5)
n(t)+tt vt)

First we concern ourselves with the lowest-moment non-
trivial sum rule. Higher moments and Schwarz sum
rules" are briefly discussed at the end of this section.

Hence we start studying Eq. (2.5) for m= 1. This
question was first studied in Ref. 14, but in this paper
we go quite beyond that analysis. In particular we will

study the t dependence of the equation as well as the
question: to what an extent is the local average of the
resonances given by the Regge terms We naturally
start with the p meson alone in the resonances side. We
must choose the cutoff between the values correspond-
ing to the mass of the p meson and the mass of the first
neglected particle along the trajectory (Jv=3 ). We
assume, and this is supported by experiment, that if
other trajectories exist they do not cross the J= 1 line
before this recurrence of the p. Extra contributions to
the sum rules are discussed later. The arbitrariness on
the choice of v is removed by the very stringent de-
mand that the t dependence of both sides of the equa-
tion agrees over a larger region.

Using crossing, the p contribution can be expressed
in terms of p(yg, ') as discussed in Appendix A and the
sum rule reads

4v.= n(f)/nt(»n')'I' '(n+2)(»n') '3, (2 6)

where

4v, = 2m, '+t—Z, X=3m„'+m ', vt= 1/kn'. (2.7)

&=2, k=2. (2.12)

The first condition selects the cutoff point to be exactly
midway between the last resonance included and the
first left out. This will turn out to be a general property
of the equations. No other choice of the cutoff can ht
the t dependence well. It is also a natural choice and we
will use this criterion from now on. The choice k=2
determines our scale factor. With this determination of
our two parameters, the two sides of Eq. (2.9) are
plotted in Fig. 2. The agreement is unusually good in
an extended region of t. We will discuss other properties
of the parametrization in Sec. 3."

Another important feature of the model is that, once
the scale factor is chosen and the prescription for the
displacement of the limit of integration is fixed, the in-
clusion of further resonances is possible without in-
troducing further new parameters. This is clear since
vj cannot depend on the number of resonances included.

By means of Eq. (2.2) we can compute the contribu-
tion of the resonance of spin J lying on the Regge tra-
jectory by going to t=mz'. Equation (2.2) actually
gives only the leading contribution but one can easily
compute the whole contribution that has to be propor-

"Notice, however, that we have changed the parametriza-
tion with respect to that paper since it was not suitable for in-
troduction of more resonant states.

"To show the importance of the choice of parametrization
we point out that, with our definitions, the value of k used
by Mandelstam (Ref. 13) is 8/e, i.e., our scale factor is 4/e times
larger than his. Such a difference is enough to ruin the agree-
ment presented in Fig. 2 quite considerably.

We have assumed the trajectory to be linear at least
in our region of interest and in accordance with the
narrow resonance approximation. "The above condition
n(—0.53)= 0 implies v, = n/4n', so that Eq. (2.9)becomes

1=Ct(n, e)(k/2) (2.11)

It is remarkable that the right-hand side of Eq. (2.11)
is constant and equal to one to a high degree of accuracy
in the region —1&n&1, if we make the choice
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Fn. 3. Plot showing the typica)
behavior of a C function. The vertical
dashed lines limit the region of
constancy.

0.5

a(t)

and we have used, as previously explained,

4p= m„'+m +i2+t—Z.

Moreover 6 is a parameter defined by

(2.15)

a( 2m '+—Z) =a(—0.53 BeV') = —5 (2.16)

and was found to be zero when the p alone was con-
sidered. Finally, P2'yi (a) is proportional to P2 '+] (cosa,)
at s=m;+&' but has the simpler asymptotic behavior

P2i+.i (a) a (2.17)

The function C„(a) turns out to be almost constant and
equal to one in an interval increasing with n ( ~

a
~
(2n).

For completeness we plot 43(a) in Fig. 3. The remaining
terms on both sides of Eq. (2.13) are polynomials of the
same degree. If we impose the condition that Eq. (2.13)
be satisfied up to a slowly varying function of t, we must
have k=2 independently of the number of resonances
included, as expected, and also the midway prescrip-
tion for the cutoG must hold at every step.

tional to Pz'(cosg). The proportionality constant can
be determined by the leading term. Since the reaction
is the same in all channels, it is then very easy to com-
pute any resonance contribution to the sum rule. The
general form of the sum rule, after inserting n resonances
lying on the leading trajectory (supposed to be linear),
is given by

- p(m, 2)

(a+8+4i—4)P2; i'(a(t))=p(t)C (a)
'=i (2i—2)!

a(a+2)(a+3) (a+2n —1)
X (k/2) ' (2.13)

(2n —2)!

where we have defined

C„(a)= C „(a, 4n —2) = (2n —2)!(—',a+2n —1)~+'

X I' '(a+2n) (2.14)

Next we assume P(t) = const. The first approximation
(n= 1) was discussed above and leasd to 8=0, namely
a(—0.53)=0. The case n= 2 demands the inclusion of
the 3 state. Equation (2.13) assumes the form

(-+~)+-,(-+~+4)P. (-)
= 2iC2(a) Xa(a+2)(a+3). (2.18)

C „(a) (2.19)
fg ~ 00

a fixed

one could expect in that limit a mathematical solution
valid for all t. This would accomplish the bootstrap of
the linear trajectory. However, such a solution does not
exist. One can see it by considering the cases n= 3 and
n=4. The resonance side of the sum rule cannot keep up
with the Regge side. The resonances decrease too fast
and the Regge amplitude can no longer be averaged by

Both sides of Eq. (2.18) are plotted in Fig. 4. The best
value of 6 is found to be —0.05, corresponding to
a(—0.58)=0. It is important to remember that in
passing from Figs. 2 to 4 we had no free parameter
available. The resonance side shows the three zeros near
the desired points 0.=0, —2, —3, and mome around
o,= —1. This is in fact the place where the zero of the I'
function of the Regge side has been erased by the
integration. LSee Eq. (2.5)].

The equality of the Regge and resonance sides holds
now in a much larger region of t compared with the
n= 1 case. This is related of course to the remarkable
property of the functions C „(a).It seems that the agree-
ment is not accidental and that this step-by-step satura-
tion provides for an iteration method to solve the sum
rules. Notice also that the new resonances extend the
region of validity of the equation, but do not alter
significantly the results in the region where the first
iteration was successful.

At this point one may hope that a single trajectory
could bootstrap itself, as first conjectured by Mandel-
stam. " Moreover, since the function C„(a) has the
property
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FIG. 4. Saturation of the same sum
rule as in Fig. 2 with the p and the
pr(3 ) in the resonance side. On the
upper left side the most important
region is shown on a larger scale. Here
the Regge side is represented by the
dashed line.

the resonances. 'r For tt=3 this can be seen (Fig. 5) in
the absence of the zeros at e= —4 and —5 on the reson-
ant side that should have been produced by the contri-
bution of the 5 . The Regge side, of course, possesses
these zeros. The connection with the behavior of reson-
ances of high spin, concerning their couplings to the ex-
ternal states, their dependence on t for the residue func-
tions, and the experimental situation, is discussed in
Sec. 3.

Several solutions may exist to the problems raised
by the above result. In Ref. 15 we conjectured that the
continuum may become important at higher energies
and the resonance approximation may become in-
adequate. If this attitude is taken, one should choose a
rather low value for the cutoff parameter and never
include high-spin resonances on the right-hand side of
Eq. (2.5). In order to get information on the pieces of
the trajectory linked to high angular momenta, it
seems that the spin of the external states has to be
raised as well. We suggested" recently that a study of
the family of reactions s.s. —& s.Xg (Xg being a normal-
parity state of spin J) could provide the natural
theoretical laboratory for studying the normal-parity
trajectories. The 6.rst step of this program is the reac-
tion m-m- —+ m-co discussed in the present section. The next
two steps are dealt with in Secs. 4 and 5.

In this section we want to attempt another solution,
namely that resonances lying on nonleading trajectories
are enough to provide for the contributions needed to
reestablish the balance with the Regge part.

' We are aware that there are more complicated possibilities
such as having P(t) a polynomial. These results however do not
depend on this choice,

The existence of these trajectories is not an assump-
tion; it is imposed by analyticity, since we are dealing
with a scattering involving particles of unequal mass.

Analyticity by itself demands the existence of tra-
jectories which are spaced by two units of angular mo-
mentum at t= 0 and whose residues at this value of t are
singular in such a fashion as to make the amplitude well-
behaved. These singularities compensate the singulari-
ties appearing in nonleading terms of the parent-
traj ectory contribution.

Hence we need a dynamical model to make predic-
tions about their behavior outside 3=0. Some models,
such as the Van Hove4 or the Bethe-Salpeter' model,
predict very different behavior for the parent and
daughter trajectories. On the other hand, Toiler et al. ,

28

in recent studies based on O(3,1), have found a solu-
tion demanding parallel trajectories away from t=0
as well. Clearly, this last possibility is very appealing
for us since these daughters generate resonances at low
energy that might help with the saturation. In order to
study this possibility in the framework of our sum
rules, we assume that the daughter trajectories are linear
but we leave the slope nn' and the residue function Pn
as free parameters. Both are to be determined by re-
quiring that, after extracting the C„(n) constant func-
tion, the solutioe be ma/hepatica/ly exact. We 6nd a
possible solution with parallel daughters. Though we
cannot prove that the solution is unique, we consider
it as an indication that the system can now possibly
bootstrap itself. Vfe parameterize our erst daughter con-

28 G. Cosenza, A. Sciarrino, and M. Toiler, Trieste Report
(unpublished) and Rome University Report& 1968 (unpublished),
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tribution as followers:

~( t) p (t)t( )(/ ) (2.20)

By the same method we used before, we can compute the
contributions from the resonances lying on the 6rst
daughter trajectory. The modi6ed sum rule reads

a p(m, s)
(a+8+4' —4)Ps; i'(a(t))

s-i (2i—2)!

t
a' ' (a+8D+4j 4)p&—(m )

+I
&an' ~2j—2

l I
I I

I I0.5 I
—-05

XE» i'(aD(t))+
pt()

a(a+2)(a+3)"
(2N —2)!

X (a+2m —1)C„(a)+, (2.21)

—-I.O

and
av( 2m s+Z)—=0, ag)(t) = a(t) —2)

(2.25)
Pg)(mr)')/P(m ') = —1/40.

where o = 2vP/ao' and lii is the analog of 8 for the first
daughter. We have also used vi ——1/2a'. The dots on the
left-hand side represent possible contributions arising
from successive daughters, while those on the right-
hand side are contributions of the nonleading regular
terms of the Regge part obtained after cancellation of
the unwanted (t=0) singularities.

The cutoff f is still chosen according to the midway
prescription. Correspondingly we have to include all
the daughter contributions from resonances lying below
f. As we are not attempting here a systematic approach
to the question of 6nding a general solution with a
family of trajectories, we neglect for the moment the
nonleading terms on the right-hand side. If we first
saturate with the p, the sum rule gives (P= const)

a+8++; aC i=(a) . (2.22)

Hence, 8=0 and the slope of the daughter must be
such that no particle is produced before the cutoK For
e= 2 we have

(-+~)+-'.(-+~+4)([-+-.'(~+1)& —:&
+Q; = sa(a+2)(a+3)Cs(a). (2.23)

Since C» 1 and the 0,' coef6cient is already the same
on both sides, we need P; to make only lower-power con-
tributions. Hence, the 6rst 3 particle on the daughter
cannot appear before the cutoff. This is in fact a general
feature of the equations. The leading terms are always
the same when the leading trajectory alone is taken into
account. Hence the daughter trajectories must be below
the parent for t/0 as well.

The solution of Eq. (2.23) with 4s= 1 demands

5=0 Q; =—(a+4)/40, bg) =4, (2.24)

and this implies

Fin. 5. Same as in Figs. 2 and 4 with the pq(5 ) included in
the resonance side. Here the Regge side is represented by a
dashed line.

So our equation demands that the first daughter be
parallel to the leading trajectory. The small ratio of
the residue function of the daughter to the leading
one gives confidence in the previous saturation calcula-
tion, where the daughter was neglected.

Concerning the t dependence of Po(t) we cannot make
too detailed predictions. We know that it must have a
1/t singularity at t=0 because of analyticity. If some
assumption is made for the t dependence, v e can deter-
mine the next to the leading term. Assume, e.g. , that,
after the singular term has been eliminated, the as-
ymptotic expansion of A (v, t) is of the form

ImA(v, t) ~ Pl' '(a)(v/vi)

+Pnl' '(a~)(v/») ' (2 26)

Then we predict pii/p= —s.
As a consistency check, we can now feed back this

term into the. right-hand side of Eq. (2.23) and verify
that the solution is essentially unchanged. This is in-
deed the case. Since the contribution of the daughter
trajectory in Eq. (2.23) represents only a small correc-
tion, the determination of its slope is not, at this stage,
very precise. However, the equality of the leading terms
gives for nD' an upper limit of about 1.5 8eV '.

As a next step we have included the s resonance lying
on the parent (p) trajectory, consistently shifting the
cuto8 parameter. Once more we do not need any new
5—state, but we need a 3—state, provided by the 6rst
daughter, and a further 1—particle demanding a second
daughter. Notice that now the contribution of the
daughters is crucial for the agreement, as one can see
from Fig. 5. Once can easily see that the same pro-
cedure requires the second daughter to be parallel as
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I.5

a(tj

FIG. 6. Third moment sum rule for mm —+ ~co. Saturation with p and
ps(3 ). Here the Regge side is represented by the full line.

well. It is important to remember that the solution is
not trivial since the number of conditions is larger than
the number of adjustable parameters. Further evidence
for this family of parallel trajectories has been pre-
sented" by means of a Schmid analysis" of the Regge
term, that confirms this picture in a rather impressive
fashion. Extra restrictions coming from cancellation of
singularities at half-integer points" for positive t make
the saturation problem both interesting and com-
plicated. It is, however, beyond the purpose of this
paper, and we hope to come back to it in the future.

We look now into higher-moment and Schwarz sum
rules. The next moment sum rule is

e(f)
II11A (v, t) = (v/vt)

0 a+3
(2.27)

One can easily see that this sum rule cannot be saturated
with the p alone, and be compatible with the previous
sum rule. In fact the system of Eq. (2.5) with n= 1 and
3 reads

n(f)
v, = C (n),

4o.'
(2.28)

rr(rr+1)
C (n)v'.

4n'(n+3)
(2.29)

These equations are inconsistent. Moreover, the second
one has different t dependence on the two sides.

The features illustrated by this example are quite

~9 The possibility that these same daughters cancel these
singularities is very appealing. However the problem requires
further study. See, for example, K. Dietz, J. Honerkarnp, and
J. Kupsh, University of Bonn Report, 1968 (unpublished).

general: One needs always at least as many resonances
as equations. This is most natural since high-moment
sum rules emphasize high-mass resonances. Moreover,
imposing more and more moment sum rules, cor-
responds to require that the average of the resonances
made by the Regge form is more and more precise
point by point. At the end, if sharp peaks exist at low
energies, analyticity will require oscillations to exist
up to the asymptotic region (eventually with smaller
and smaller amplitude).

With this idea in mind, we try to satisfy the equa-
tions by including the contributions of the 3—.Equation
(2.28) transforms into Eq. (2.18) that holds very well.
Equation (2.29) becomes

( +~)'+-,'( +~+4)'( +-', ~+-,'+v'-.')( +-', ~+-', -V'-.')
= 2~(~+1)(~+2)(~+6)'4's(~) (2 3o)

Equation (2.30) is plotted in Fig. 6 for b= —0.1 cor-
responding to n( —0.64)=0. The agreement is quite
satisfactory. Notice in particular that the resonance
side shows, to a good approximation, the zeros at n= 0,—1, —2 and not at 0,= —3, while the positions for the
first-moment sum rule were 0, —2, and —3.

We look now into the Schwarz sum rules. " In our
system they are supposed to hold for n even. As is well
known, the presence of dips seems to be related to their
validity since both depend on the smallness of the third
double spectral function. In the case of xÃ charge-
exchange scattering, there is good experimental
evidence for the dip at the right position but the
Schwarz sum rules are badly violated. Though there are
possible accidental mechanisms to make dips present
and Schwarz sum rules violated, this is an outstanding
theoretical problem. " In our case the same result is
obtained: The Schwarz sum rules are not satisfied. In
fact, saturating the first Schwarz sum rule with the p,
we obtain

1=r-'( + 1).- '(~/. ,).-'= (( + 1)/4 ')C, ( ),
C I(n) 1. (2.31)

Equation (2.31) demands v= (n+1)/4n' instead of our
previous solution v = (n+2)/4n'

It is amusing to notice that the solution of sum rules
demands such a cutoff as if a particle of spin 2 could
couple to the reaction and would lie on a degenerate
trajectory. Such a trajectory cannot exist because of
crossing symmetry and conversely crossing symmetry
makes the sum rule trivial when p,„&0.

Consider finally the possibility of saturating the
system of equations for the moments n=1, 2, and 3,
saturating with p and 3 . One finds the necessary
conditions

vv np, vtI n+2, v rr+ 2. (2.32)

Equation (2.32) implies that the mass of the 3 is
where the trajectory crosses J=2 and the cutoff is
the one corresponding to such a mass.
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The failure of the Schwarz sum rules poses a delicate
problem. However, it seems clear that the correspond-
ence between the average amplitude and the Regge
amplitude is quasilocal and that no compensation occurs
from points that are very distant in v. It seems possible
that the local average holds in the v variable even when
some contributions are coming from the other channel,
a most intriguing and interesting possibility. This seems
to be the case in xp scattering and in other processes
as well.

Our parainetrization of A(v, t), Eq. (2.2), implies

p(s) (2.+1) t
2 r(.+-,)

2 vl '=p(s), (3.4)s'" [n(n+I))'"4 2(q p )

where p(s) is known to be smooth function at low energy
and is bounded by a polynomial at all energies. Then

[n(n+1))'" t q,p, y
p(s) =p(s)l —

I zv s'",
I I (3 5)

&2i 1(n+-;) E 2» i
3. EXPERIMENTAL AND THEORETICAL

CONSIDERATIONS ON g(t)

A. Theoretical

In all the reactions discussed in the paper (see also
Secs. 4 and 5) we have assumed linear trajectories only
in a region around 3=0. Our results do not imply,
neither do they necessitate, the linearity of the tra-
jectories when the energy goes to infinity. Nevertheless,
it is interesting to make the assumption of a kind of
maximal simplicity and to suppose both linearity of the
trajectories and validity of our parametrization of the
P residue function at all energies.

Khuri' has shown that rising trajectories imply
very restrictive conditions on the Regge residue func-
tions p(t) such as to force them not to obey dispersion
relations. Jones and Teplitz" have subsequently argued
that it is plausible for P(t) to have an essential singu-
larity at infinity for rising trajectories, thus restoring
consistency with Khuri's theorem. Here we want to see
how Khuri's paradox is solved in the context of this
work.

The main restriction imposed by Khuri can be stated
as follows: The Regge term in the s channel is bounded
by a polynomial in s for s-+ + oo both at fixed t and
fixed z= cos8,.

Consider the reaction ~~ —+ vcr. We neglect for sim-
plicity the pion mass. By means of a partial-wave ex-
pansion and a Sommerfeld-Watson transformation we
can write the s-channel Regge-pole contribution as

lim p(s)=(-'e) t'P(s)=e '"' ' "P(s)
tt ~0@

lim P(s) = (-'e) ~t'&P(s) = e'4~ '~ to' 'iP(s),

(3.6)

(3.7)

where E(s) is bounded by a polynomial.
We next prove that Eq. (3.5) implies the Khuri

bounds to be satisfied. These read

I
(2n+ 1)p(s)/[sins. n(s))dst (s) I

&s~

when s-++ ~ and z or t is fixed. (3.8)

Let us first consider z fixed. We use the relation

(1—z')'" d
dot (s) = —P (s)

Ln(n+1)1'" d

and, for fixed physical 0,

(3 9)

( 2 )'~'sin[(J+ —z')tI, +srs.)
llnl Ps(s) I I ) (3.10}

E rrJl (sin8, ) '"
while for 8,=0 we use Pq(1) = 1. (3.11)

Mandelstam's parametrization is different than ours.
A similar analysis yields

p(s)M s l is ~ polynomial in s.
g ~to

His scale factor is vi=e/8n', while we have found
vi ——1/2n, which is a little bit less than twice Mandel-
stam's one. From Eq. (3.5) we see that our residue
satisfies

(e-*'--1)p(s)~ 2 q'" (2n+1)
A(v, t) = —

I

kswi q,p, [n(n+1))'" sinsn

Then

IP t,&(s) I
&const, (3.12)

-~(-+l)
X 2a—IZa—1

1(ny1)

where n —+ ~ and z is fixed. A similar argument can be
(3.1) used for dst (z). Finally,

where p(s) is the residue of the Regge pole of the
analytically continued partial-wave amplitude with
definite helicity f+(J,s):

f+(~, )—=P( )/[~ —( )) (3 2)

p, = -,'gs, q, = (s—m')/2+s. (3.3)

"N. N. Khuri, Phys. Rev. Letters 18, 1094 (1967)."C, E.Jones and V. Teplitz, Phys. Rev. Letters 135, 29 (1967l.

(2 +1)p()d .() p()
Cs

sin7rn(s) sins n
e—0 4a [Gev&]p(s)

=C (3.13)
sin+a.

The inequality (3.8) cannot hold at the particle pole.
This difhculty can be avoided by relaxing the narrow-
resonance approximation and allowing for a small non-
zero imaginary part at the pole. Alternatively, the in-
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Since u(s) =u's+ b, we have, as s —+ oo, (3.15)

Then
Peru'(st)'"g-'" expt 2u'(st)'"j. (3.16)

&'oi(s) 1—
~
1+

s—m'i

X ——P (,) (3.17)
Lu(u+1)3'&' dz d~

=L47ru'(st)'"j '" expg2u'(st)'"j (3.18)

as s —+~ with t axed. Finally

l(2u+1)P(&)&et (s) I
&

1
expL —0.4s+2u'(s1)'"j ~ 0 (319)

(4rru'st) '" g ~00

The reason why we are able to satisfy both bounds is
that our parametrization of the p forces the latter to
have an essential singularity at infinity. It is also im-
portant' that the trajectories grow faster than s'I'
and in particular linearly for the axed-angle bound.
Hence our solution of the Khuri paradox is identical to
the one proposed by Jones and Teplitz. "Our P, how-

ever, decays exponentially and does not go like the in-

verse of a F function as in their case.

B. Exyerimental

We discuss here the experimental consequences of our
parametrization. We start by recalling that trajectory
functions are in good agreement with the assumption of
Iinearity at low energies in the particle side and in the
high-energy low-t scattering region. Trajectory de-

generacy seems well established to some 20% or better.
Our main task here, however, is to discuss the P(t)

residue function. Our definition of the scale parameter
turns out to coincide with that of Kramer and Maor"
for high-energy fits. We then have

vi=so ——(1/2u')~0. 6 GeV'. (3.20)

Assuming constancy of the residue function, apart from
the I' function, we have a definite exponential t depend-
ence induced by the scale factor.

'2 M. Kramer and U. Maor (to be published). We thank Uri
Maor for giving us his results prior to publication and for interest-
ing discussions on the subject.

equality can be interpreted as referring to local averages
in some interval.

Clearly our result (3.13) shows that we obey the
inequality.

Consider now the fixed4 limit. Then,

P (,) (1+2t/s m'—) Is(2ugt/(s m'—) 'I'). (3.14)

I.et us first discuss the negative region. The difference
between a v and an s asymptotic behavior can be
tested by performing large-momentum-transfer (fixed-
angle) scattering. We predict the existence of secondary
dips. Kramer and Maor" have obtained good fits for
inelastic high-energy scattering involving the vector
and tensor trajectories with a parametrization very
similar to ours. In particular, their scale parameter is
very close to that of Eq. (3.20). These authors have also
found necessary, in order to fit the data, direct Reggeiza-
tion of invariant amplitudes rather than helicity ampli-
tudes. From the point of view of our sum rules, it looks
quite dificult to match the extra t dependence intro-
duced by the t-dependent crossing matrix of the helicity
amplitudes.

Also we predict no dip for the A2 trajectory
(Gell-Mann mechanism) in agreement with other
calculations. "

The values of the constants P, required by our solu-
tion, demand relations between the different trajectories
and in particular, as explained in Sec. 4, we have
degeneracy of the residue functions in agreement with
the analysis of Ref. 32. A more direct test of our P(t)
could be achieved by using factorization in the context
of the reactions. xX, SS scattering, and mS~ ~¹
However, the experiments are still too imprecise to let
us draw any conclusion.

Concerning the positive-t region, we already stated
our prediction of an exponential dependence of the
couplings as a function of J. Such a law seems verified'4
in the experimentally accessible case of baryonic Regge
recurrences. For mesons we can predict, from the I
dependence of P(t), the ratio

gii gg,„ 1 P(mss) 1
X—=0.87X10—' BeV—', (3.21)

g, ~~g, ~~ 16P(mi') vi

where g, and g, „are the conventionally defined p
couplings and we used

&(R~~) =sg~-e", '"'(Pi P2).(Pi Ps) (P—i Ps~. —(3 22)—
Z(Roi7r) =ig g „e„„p,e„g„&~&e„'~&gyps.

X (V-P.).(~-P.),. (3 23)

The kinematics are defined as for an s-channel E ex-
change in Fig. 1.Equation (3.21) puts only a lower limit
on the E width, and is completely consistent with
present data.

4. STUDY OF THE SUM RULES FOR
~~ —+ ~A2

There are several interesting new features in this
reaction, which can be thought of as a second step in
the study of the general PP-+ PJ scattering (see Sec.
1). First, there are now two independent helicity ampli-

3' F. Gilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters 21,
323 (1968)."H. Goldberg, Phys. Rev. Letters 19, 1391 (1967).
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tudes, since, though the helicity zero of any normal-
parity state will remain uncoupled, the spin 2 of the
external state allows for a new possibility. Second, the
isospin structure of the system is now more complicated
and allows more states to contribute in all channels.

As shown in Appendix A (see also Ref. 15), the I=0
Pomeranchuk trajectory that controls high-energy scat-
tering does not couple to our reaction. This was shown
to be the case in the SU(3) limit. Since experimentally
di8ractive production of the A2 is not observed, this is
a good indication that the xA~ Pomeranchuk vertex is
indeed very small. "

Even if it is not zero, Harari" has presented argu-
ments suggesting that the Pomeranchuk trajectory is
generated by the continuum and not by the resonances;
hence we shall ignore the Pomeranchuk trajectory in
any case.

Because of the presence of two helicity states, the
choice of the amplitudes becomes a nontrivial problem.
The point is that helicity and invariant amplitudes
have extra t-dependent factors with respect to each
other. The former must in fact obey conspiracy condi-
tions at the thresholds and pseudothresholds of the t
channel in order to insure conservation of angular
momentum.

This problem did not appear in the previous example
(s.s ~ s.~) because only one independent amplitude is
present there.

In the case under study in this section, the problem
can be stated as knowing which amplitudes show a sim-
ple asymptotic behavior like that of Eq. (2.2) with a
smooth P(t).

Notice that, as we need only the leading term in v,
we can think. equivalently in terms of Regge or Khuri
poles. In the erst case use of regularized helicity ampli-
tudes would seem preferable, while the invariant ampli-
tudes seem the natural choice for Khuri poles.

We notice, however, that the conspiracy relations
forbid a very simple dependence like that of Eq. (2.2)
for the helicity amplitudes. We then choose to work with
the invariant amplitudes. In this way conspiracy rela-
tions are automatically satisfied. "

Still we shall use the helicity amplitudes as an inter-
mediate tool, in order to calculate the contributions of
each resonance to the sum rule while avoiding the
cumbersome propagator techniques for high-spin
particles.

We shall consider saturation of the sum rules with
resonating states up to J=4 and lying on the leading
trajectories.

Hence our task is to compute the contribution to the
two invariant amplitudes of the following particles:
p(1 ), f(2+), ps(3 ), and f4(4+)

"D.Morrison, Phys. Rev. 165, 1699 (1968)."It is interesting to point out that our amplitudes obey a
conspiracy condition at both threshold and pseudothreshold, and
not evasion. We have no kinematical constraint at 1=0 (in our
case an unphysical point). These constraints, however, cannot be
tested experimentally.

A& &( v)=(—)'A& &(v)

&'"(—v) = (—)'"'&'"(v) (4.2)

can be easily verified. In (4.2), I is the isospin in the
t channel. To compute the contributions of the reso-
nances to our equations, we introduce helicity ampli-
tudes.

The t-channel helicity amplitudes are seen to be re-
lated to the invariant ones by

Tr' ——AL —gs(ggt/tm)iPP sin8& cos8~$

gB/qP f( i)/m jP—, sin8, -,'tj (4.3)
and

Ts' (iPPg———,(gt) sin'8, ]A,
where (m is the As mass)

(4.4)

t=4p, '+4m. ' gp= (1/4t)L(t —m' —m, ')' —4m'm. 'j,
qs, ——(1/2+t)( t+m' —m ').

As usual, one delnes the singularity-free helicity ampli-
tudes by

Tr'= 2(sin8&) 'Tr' (4 5)

Ts' ——4(sin'8~) 'Ts'. (4.6)

A similar procedure can be followed in the s channel and,
in this way, amplitudes that are free of kinematical
singularities and zeros in both the t and s channel can be
constructed. Because of the crossing properties (4.2),
the lowest-moment nontrivial sum rules turn out to be
seven, namely,

ImA &»dv= 0, (4 7)

v re&»=0 (4.8)

v ImA&'2~dv=0, (4.9,4.10)

ImB &0'&dv =0, (4.11,4.12)

v' ImA &'~=0. (4.13)

In order to evaluate the resonance contribution, we
have to express A and 8 in terms of the s-channel
helicity amplitudes. This could be achieved by using
Eqs. (4.3)—(4.6) and then the crossing matrix between
s- and t-channel helicity amplitudes.

Our scattering amplitude is decomposed as (see Fig.'1
for the kinematics)

seve & ~v" p&4'p~&ps'

XP(p+ p ).&.s"+(p -p ).~'"'l.:(4.1)

The crossing properties
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TABIE I. Values of c; in Eq. (4.30) and form of the right-hand side.

Sum rule
P3

C1

2vp

C2

Vj'

C3

3vf

2vj'

C4

2v3

p2(3 )
C5

3v3

C6

—V4+

2v4+

f(4 )
C7

3v4+

2v4+

Right-hand side

p A 24 ( p ) ap-2

I'(,—1),—IE i
ps v2 (vol p

—2

~(422) 422+1 4v' 4

pfA r2 ( v 'l af-2

I'( f—1) c4f i4 v2~

pf" p'( r ) af-2

I'(~f —1) ~f k v2~

pfs v ( v 2l af 2

I (~f) 42f E V24

PfB v ( v 4l ay 1

I'( f)

Vp
2

VX Vf V3
2

V
—2

V
+2

V
+2

p A 3 zEp 2

I'(422 —1) 422+1 (v,)

1
2

a, t~inv ampl
3
2

(4.14)
TABLE II. Values of I; in Eq. (4.30).

However, it is simpler to introduce s-channel in- invariant-amplitudes level, where the crossing matrix
variant amplitudes, obtained by Eq. (4.1) after the sub- is numerical and immediately computed to be
stitution Pi 4-2 —Ps, and use crossing symmetry at the

gpB

4ap'

1 pf Pfqf)

4 42f V2

] p~A

4 ny'

As a final result we get

A = ——,'im(1/p, q, 's) Ti'+ (i/4p, 'q, 's) (p,qp cose,

', q,gs) T,'=—Q-zz2.(s,t)Ti', (4.15)

B=,'i z(rz1 p/, q, ss)—Ti' (i/4p, 'q, 's)—(p,q„cos8,

+,q,sg )Ts2' ——P-bg(s, t)Ty'. (4.16)

1 p,B p3-g3-
83 2+——

8 0!p V1 40 up'

These formulas are enough to enable us to write

T' = C g'Tg' (4 17)
P2 q2 ) 2qo2 p2

X Pa !+2pA
A+VI

gpAp —~—
S3

4 clp v1

The sum rules can now be written down also for the
regularized helicity amplitudes.

The integral over the resonances can now be cal-
culated. We have

g~si23 + A ' =g Czz Z ax(s, t) Ti, &' '
I'

(4 18)

p4+q4+ 1 p4+q4+ (p4+q4+242
X -Pf + Pf ! !24

8 v2 2 2N4+q4+ ( v2

3 P . A p +q +4l2

! (7.."—1)
247 f' v,

B"'=2 Czz 2 &~(s4t)T~"'
I X

(4.19)

where Czz is the SU(2) crossing matrix. If we define

T-pvp= 3pv~-2T4'"+ spy «-p ZT4'"

+ (Spall p+ 8rabpp s8p~8ap) T4 "&,—(4.20)
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TABLz III. Functions 4& and forms of the right-hand side of Eq. (4.30) after saturation with p and f
(first two columns) and p, f, pa(3 ), and f4(4+) (last two columns).

Sum
rule
No.

Saturation with p and f
Smooth function Right-hand side with C =1

Saturation with p, f, p3(3 ), and f4(4+)
Smooth function Right-hand side with C =1

C'(a) =F 1(a+1)f(a+2)/2]a I

Cs{a) =F 1(a+2)f(a+2)/2] +&

C( )-F- ( +1)L( +1)/2j
C (a) =F I(a+2) f(a+3)/2]a
C (a) =F-I(a+1)f(a+1)/2ja
C (a) =F (a+2) f(a+3)/2$ +

C (a) =F I (a+2) f (a +2)/2 ja+I

vip& a (t)

vip& ap(t)
v2&pf&faf (t) —1)
vypf~faf(t) —17faf(t) +1)
v&Pf

»Pf+faf(t) +1j
VPPp fap (t) 1)ap (t)

C(a) =3fF &(a+3) f(a+6)/2/a &

e(a) =2F I(a+4) f(a+6)/2g +&

C (a) =2F I(a+3) f(a+5)/2g
C'( ) =3!F '( +4)f( +7)/23
C (a) =2F &(a+3)f(a+5)/2 ja
C'(a) =3lF '(a+4) f(a+7)/23 +'

C (a) =2F I(a+4) f(a+6)/2j +&

tIPp v lap (ap +1) (ap +2)
g Pp vI ap (ap +2) (ap +3)
—pf~vp(af —1) (af+1) (af+2)
s pf "vzs (af —1) (af +1)(af +2) (af +3)
kPf »(af+1) (af+2)
6 pf+V 2 (af +1) (af +2) (af +3)
z Pp vl ap (ap —1) (ap +2) (ap +3)

we find
~1 2

3 3
1 1CIl' 2 2
1 1

~2 2

10/9'
5
6

1
6

From sum rule 3 we get immediately

p, = A [(nr 1)/—nr']
(4») and

s= n'—nr'»'(Pr'/'Pr')

The Regge residue functions are defined by the equa-
tions (valid for large p and fixed t)

From sum rule 5 we obtain

(4.32)

where

and

A'"=k (,)p,"(t)(/ )" ',
A&e&= p(nf)pf—(t)(p/»)

&"'=r'(n, )p'(t)(p/»)" '

~&'& = -&+( r)prB(t)(/p ).r-',

$+(n,) = (1&e '~~')/sins-n;,

P r"(t)=r-'( -1)8 r"

p, ,'(t) = r- ( )p, ,
p", pB~ const.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

We now consider sum rule 6. The equality of the first
derivative with respect to t gives

1F2' = 2.

Using this and the linearity of the trajectories we derive
also"

mA '= 3(its '—m ') and PrA ————',PrB. (4.33)

With the use of (4.33), sum rule 4 turns out to be
automatically satisfied. Finally, sum rule 1 demands
n, =nr and A= ptn, 'P—,A/prB In co.nclusion, the solu-
tion of our system demands

n, (t) =nr(t) =n(t), vt ——vs= 1/2n',
PA —PA — 1pB 1pB

The reader is in possession of all means needed to write
the sum rules. The road is straightforward, but the
algebraic calculations are lengthy. One of the seven
equations is derived in Appendix B to show the method
in detail. We thus obtain the system of sum rules:

P c,E;= right-hand side. (4.30)

The coefficients c; and the right-hand sides (Regge
contribution) are given in Table I for the various sum
rules, while the expressions for the E s are listed in
Table II.

We start by saturating the resonance side with p and

f only. The sum overi in Eq. (4.30) extends then up to
3. Furthermore, by following the procedure of Sec. 2,
it is possible to extract from the right-hand. side of each
of the seven sum rules a smooth and practically con-
stant function C„(n). The C functions as well as the
final form of the right-hand side are given in Table III.
Letting now C = 1, we get an algebraic system of seven
equations that are immediately read from Tables I
and III.

and the mass formula

A2 3~2 3~ 2 (4.34)

The remaining two sum rules (2 and 7) are not mathe-
matically satisfied but both sides agree up to a slowly
varying polynomial. The condition that must hold for
an algebraic solution to exist is

s(nr+3) =1, (4.35)

which is not badly violated in the region of n where the
solution is checked [C(n) 1j. The fact that these two
sum rules are not exactly satisfied may be related to the
problem of choosing the right cutoffs in the positive and
negative regions of v. If we take a particular channel
giving sum rule 2, we see that the s and u channels may
need different cutoff parameters (for instance, if we
have only I= 1 states in the s channel and I=0 in the I
channel). This is enough to change Eq. (4.35) into a
mathematically consistent equation.

In any case let us now look to the modifications in-
duced by introduction of other resonating states, i.e.,
the 3 and 4+ particles on the p and f trajectory.
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FIG. 7. Plot of sum rules I, 2,
3, and 4 for mm ~ mA2. Satura-
tion with states up to spin 4.
The Regge side is represented
by the full line.
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where

v, = (1/4u') (u —1),
v3- ——(u+3)/4u',

vf = (u+ 1)/4u',

vf4+ (u+5)/4u

p 4+/ 4+84+/v2 =u+ 2,

PB 4' SS /V4

p4 a4 /»= 2(1 -~),-

e =u'(mg, '—mf')

Pf'g fzf/v2 (t I)f/4v2 u

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

We still use Eq. (4.30) with i running now up to 7.
The only difference in the right-hand sides is that the
higher cutoff v makes us extract diferent smooth C

functions as indicated in Table III (column 3). Setting
C = 1, we obtain for the right-hand sides the polynomials
shown in Table III.

Ke shall not attempt here a best Qt of the seven sum
rules in order to determine all the three parameters.
Instead, we use the solution already obtained from the
previous saturation and given in Eqs. (4.34). As we
show below, all the sum rules are quite well satisfied in
a larger region of t. This con6rms essentially the results
obtained in Sec. 2 on the reaction xx —+ mo, where the
solution obtained at the first iteration was almost left
unchanged at the second in the region of t erst con-
sidered, while the whole region of agreement was ex-
tended. Let us now describe the details of the check of
the seven sum rules.

Using Eq. (4.34) and neglecting for simplicity m,
we can easily express the factors E; and C in terms of
u(t) and two independent parameters u(0) and e, by
means of the equations (linearity assumed!)

P4 a4/»=(1 —l~) (4.44)

4goa-ps-'/era-vs =u'(m4-'+ m') = 5—2u(0) . (4.45)

The system is further simplified by choosing &=0,
u(0)=-,', u(0) being the trajectory intercept at t=0.
We finally get

u(u+ 1)(u+2)+ 5+ (5/28)(Su+3)
=u(u+ 1)(u+ 2) (4 46)

'u(u+3)(u+5)+ 6(u+2)'(u+5)(u+ 7)+ (7/40) (u+3)
+(3/28)( +5)( —.')=2 ( +2)( +3) (447)

(u —1)(u+ 1)(u+ 2)+ (7/20) (u+ 3)
= (u—1)(u+1)(u+2), (4.48)

( —1)( +1)( +2)( +3)+ (1+-'. )
—5/4+(3/14)( +5)(5 +l)

= (u+ 1)(u—1)(u+2)(u+3) (4 49)

(u+1)(u+2)+ (7/20) = (u+1)(u+2), (4.50)

(u+ 1)(u+ 2) (u+ 3)+4 (u+ 2)+ (15/28) (2u —1)
= (u+ 1)(u+2) (u+3), (4.51)

u(u —1)(u+3)(u+S)+(7/20)(u+3) +(u+S) (u+-')
xI -:( +-,')( —1)+3/14]+( +s)'/14

=4u(u —1)(u+ 2)(u+ 3) . (4.52)

The above equations are plotted in Figs. 7 and 8, and
we consider the agreement very good. Notice that reson-
ances and Regge side agree in a quite large region of t
over variations of several orders of magnitude. The re-
maining discrepancies can probably be Gtted with a
slight change of the parameters that we just took from
the previous determination. In particular one should
vary the P ratios.

Finally, one may invoke contributions arising from
"daughter" resonances to further improve the agree-
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FIG. 8. Plot of sum rules 5,
6, and / for ~~-+ ~Am. Satura-
tion with states up to spin 4.
The Regge side is represented
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ment. This is strongly suggested by the fact that a
mathematical solution to the equations needs (in most
of the sum rules) lower-order polynomials in n, that can
just be brought in by lower-spin resonances. An in-

dependent confirmation of this fact has been found by
means of a Schmid partial-wave analysis" of the Regge
terms in xm —+ zA2. '~

The remaining main error could possibly come from
the difference between the narrow approximation and
use of Breit-Wigner formulas, specially when high-
moment sum rules are involved. However, within the
scope of this paper, we can conclude that the results
of this section confirm those of Sec. 2. They support the
possibility of a bootstrap of the highest normal-parity
mesonic trajectories together with the whole family of
their daughters.

S. 2323~ estos (3 ) SCATTERING

As explained in the Introduction, the most convenient
way to study the properties of the high-spin particles
along the leading trajectory is to raise the external spin.
Moreover, though the recurrence of the ~ particle has
not been confirmed experimentally, it is most important
to check our solutions in this case as well.

U we work with amplitudes behaving at most as v

for large v, we have five independent sum rules due to
the existence of three independent helicity amplitudes.
The scattering amplitude T is decomposed as follows:

epa23epvp PlpP2XP33/(P2 Ps)p(P2 P3)p~l
+(Ps+Ps).(P2—Ps),~2

+(Ps+Ps).(Ps+Ps),~sj, (5 1)
"The partial-wave analysis of mx -+ ~Am with the parameters

given by (4.34) reproduces the leading trajectory in all relevant
helicity amplitudes as well as the daughters. Because of the very
complicated equations and the diferent projecting operators, we
feel that this is a very good con6rmation of our solution. W'e thank
A. Schwimmer for his collaboration in this part of the calculation.

where the kinematics are the same as in the previous
sections. Crossing symmetry now simply reads

A,(—3) = (—)'+'A, (P),

and in the case of s, t interchange

A, (t,s) =P C;;A;(s,t)

(5 2)

(5.3)

with the matrix

C"U 4
1

—3 9
2 6
1

(5.4)

Finally, we define the Regge amplitudes by

~'( ") 5( )0'(t)(/ ') (5.5)

where v; is the scale factor, $(n) the signature, and

P,(t) =j,yr( —sy1). (5.6)

The general sum rule reads

v" IG1A;dv = v-n+1 / — a—i

I'(rr —i+1) ot—2+1+I 5 p;

To compute the resonance side we use the same pro-
cedure as in Sec. 4. We introduce helicity amplitudes
and we compute the resonances in terms of them.
However, for the same reasons as before, the sum rules
in the two representations are not equivalent. We use
then helicity amplitudes just as calculational aides, but
we reconvert them in terms of invariant amplitudes.
We will not repeat here these lengthy calculations but
refer the reader once more to Appendix 8 where the
method has been used for similar sum rules.

We will carry out the calculation only to the lowest-
order approximation by introducing as intermediate
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states only p and p(3 ). In the Regge side we have to
extract the slowly varying function. We find out once
more that, in order to be able to do that, we must have
necessarily «, =1/2n„'=v& and the cutoff v has to be
chosen according to the midway prescription explained
in Sec. 2. We also use e,'=n„' as obtained in Ref. 15.
As a consequence, the cutoff P can be expressed as

follows:

4v= (28+ t Z——2/n") = [n(t)+4]n'. (5.8)

The same procedure of Sec. 2 leads then to the set of
slowly varying functions given in TaMe IV.

The resonance side is calculated as explained above,
and the five sum rules read

Px(pq'1' (pqs) 1 (p'q'E) m'd 4 pq~' (m'm '+E') — a(u+2)
'«.PI-+» —

I

-—
I

(5&'—1)—~P2I I+49P3 —— P~+ P3 ——
I P3 =P~

40' vi) E vi J' 5 vis' s4 5 vi) s4 4u"

py(pq ' (pqs 2 (p'q'E) 2m'd 8 (pq)' (m'm '+E') p,a(u+1)—kpI ——
I

—(5&'—1)+2P21 +$P3+ - P2 —P3+-I —
I

vx' P3=
20( «I k «I 5 vqs' s' 5k vqI s4

2 (p'q'E)—2«,%+»-' ——
I
(5s' 1)—+kp~I I+-,'P3+ - P2

20 vq) k vq ) 5 vqs

(5.9)

(5.10)

2m'd 8(pq ' (m'm '+E') —
p

Pg+ —
I

—
vg Ps = n(n —1)(a+2), (5.11)

s4 5(vg s4 8n"

P~ pq ', , (Pp, , (PqE)
4«pp~+» —- (—5&' 1)+4P—~I +~P3 5P2—

-40 vg E vr vgs'

m'd) 4 pq)
' (m'm3'+E') —

p3+ IP3
———

I

»' P3 = r'u(u+1)(u —2), (5.12)s' ) 5 vg) s4 4n"

p, pq
' pqs) (p'q'E) m'd

gvv pl+«3-' ——(5s' —1)+~P2 I+gp3 xp2 + p3-
-40 vy vy I vrs s

4(pq ' (m'm3'+E') —
p,

P3 —— a(a—1)(n —2) (n+2) . (5.13)
5 i vt s4 16n'4

m3 ——massp3(3 ), E=m32+m' —m ',
s' = (m3' —m' —m»') ' —4m'm»' (5.14)

and p (q) is the center-of-mass momentum of the 2-pion
(~+a,) system. Other symbols are standard. We now
express everything in terms of n(t), as in the preceding
section, and we neglect the pion mass and the cv(3 )

TABLE IV. Slowly varying functions in +71 —+ 71 cate.

Sum rule (5.7) Slowly varying function

In Eqs. (5.9)—(5.13) we have used the definitions

m= mass&f3(3 ) d = -'ma'(m'+3m ' —ms')'
—m.'(m' —m»') ' s = cos8,

—p(3 ) mass difference. There is no result that is
sensitive to this approximation though this could seem
so at first glance because of the s' denominators.

Demanding agreement for the leading terms of Eqs.
(5.10) and (5.12) we obtain the condition

Pi= -P2=4P3 (5.15)

4(n —2)+8(n+2)
X(( —.)( +9)+27/5)) = ( +2),

n(n+1)+13/20= n(n+ 1),

(5.16)

(5.17)

-'(u- )'+-'(a+ )'&(n+ )(a- )+ /2o)
=n(n —1)(n+2), (5.18)

The sum rules are now pure functions of o; that read

(1) v=1, t I=
(2) n=o, i=2
(3) n=2 i=2
{4) v=1, i=3
(5) +=3, i=3

I' '(u+3) I:(u+4)/2)»+'
2I' '(m+2)L(n+4)/2]» '
r-~(u+3)L(~+4)/2]-+'

2I' '(n+2)L(u+4)/2]» '
I' '(~+3)E(u+4)/2] +'

n(n+ 1)(a—2)+ (13/20) (n+ 2) =n(n+ 1)(a—2), (5.19)
—', (n —2) '+ s (a+2) '[(n—2) (n—1)+13/20]

=n(n —1)(n—2)(a+2). (5.20)

The presence of different-moment sum rules makes it
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impossible to have always the same polynomials on
both sides.

We have plotted the sum rules in Fig. 9 in the region
of t where the C function is close to one. We find very
good agreement. Notice that we have not adjusted any
parameter except the ratios of Eq. (5.15).

Hence by including this reaction, we can determine
LEq. (5.15)) the coupling ratios of the cu(3 ) to p and

p(3 ) if we extrapolate to the particle position on the
trajectory.

To obtain algebraic solutions we need presumably
more resonances (we stopped below threshold) and the
daughters as well. We are not going into this question
in this paper.

We conclude by mentioning that high external spins
tend to shift the nonsense points towards the positive
o, region, thus demanding the resonance side to vanish
for positive t. This indeed happens (see Fig. 9), and
comes about partly because of the rise in the external
mass shifting the v factors in the right direction Lsee
Eq. (5.8)j. It is necessary, for our bootstrap to work,
that mass increases with spin.

6. CONCLUSIONS

—4

I-2 -I

-50

-40

— IO-2 "I
I

The purpose of this paper has been to construct a
viable model for the calculation of strong-interaction
properties of mesons. Starting from general principles
and making a few, but quite reasonable, dynamical
assumptions, we have been able to derive masses,
couplings, and internal quantum numbers of particles
as well as their behavior as components of Regge tra-
jectories. In every instance when comparison with ex-
periment is available, we have had an unqualified
success. Moreover, we have been able to satisfy the
relations imposed by analyticity in a region of the mo-
mentum transfer which is extended in successive steps.
However, we are still far from a complete theory. Let
us discuss the points that require further investigation.
Though the region of both positive and negative values
around t= 0 seems to be well understood in terms of one
leading trajectory, we have shown that such a simple
model cannot hold everywhere. We have presented
evidence for the possibility that daughter trajectories,
which must exist, generate resonances and could be-
come the relevant portions to compensate for the sum-
rule resonance deficiencies. However, we have not con-
sistently studied the daughters themselves, or any other
mechanism that might be the relevant one. For instance,
the whole family of trajectories must be subject to con-
straints since there are unwanted singularities at the
positive half-integer values of 0. that should be elimi-
nated. Our family of parallel trajectories can fulfill
this requirement with an appropriate choice of the
daughters' residue function, but a systematic study of
this problem has been left for further investigations.

Moreover, it is not clear at all whether trajectories
are ever rising and, if so, always linear. Kugler38 has

's M. Kugler, Phys. Rev. Letters 21, 570 (1968).

-IO-I I

FIG. 9. Plot of the five sum rules for the process ss -+ see&(3 ).
Saturation with states up to spin 3. The Regge side is represented
by the full line.

recently presented arguments for nonlinearly-rising
trajectories.

On the other hand, the success of the step-by-step
approximation and the stability of the solutions against
inclusion of intermediate higher-spin states and higher
external-spin states seems very encouraging. In parti-
cular, the successful results of Secs. 4 and 5 seem to
support the viability of a bootstrap program proposed
in Ref. is, in which the resonance approximation is
abandoned in the intermediate- and high-energy region.

The picture that seems to emerge is that the ampli-
tude is very much like the local average of the ex-
trapolated leading Regge term. In other words, it
seems that the Regge representation is much better
than what was believed and it is a very good representa-
tion almost everywhere except for the resonance poles.

Several other theoretical problems are raised by our
results. The dip —versus —Schwarz-sum-rules paradox
seems enhanced, and the need for some additive fixed
pole in our amplitudes seems unavoidable. However,
we cannot find the origin of this term within the present
theoretical ideas.

Also, the strong dependence Of our sum rules on the
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masses of the external particles and resonant states
is very appealing from the bootstrap point of view. On
the other hand, it leaves little maneuvering space for
accommodation of photons in the system. More pre-
cisely, the reaction xm —+ mo can be transformed with
no essential modification into mx —+ xy, where y is a
variable-mass isoscalar photon, and clearly the equa-
tions cannot hold.

One could argue that linear-unitarity and double-
spectral-function eGects might make these sum rules
nonvalid for photons; however, the problem is not
simple. This question also requires further study.

As a whole, if our model is correct, it seems that
relativistic hadron dynamics is simpler than what it
could have been. The third double spectral function,
though needed for unitarity purposes, serves very little
dynamical purpose, and the equations determining the
properties of the trajectory, as described in this paper,
seem both simple and accurate.

APPENDIX A: DERIVATION OF THE SUM
RULES FOR PP —& PV AND PP —+ PT

We want to show in this Appendix the methods used

to derive the sum rules discussed throughout the paper.
The processes under study are of the general form

(A1)P8+P8 ~ P8+Jj )

where J denotes a state of spin J and natural parity
and the subindex denotes the SU3 representation. We
use for simplicity the SU(3)-symmetric limit from
which SU(2) sum rules can be easily extracted. We erst
discuss the case J=1 and i= 1, 8. There is only one

possible amplitude that we denote by A(v, t) through

the definition

T~»'(v, t) = e„,v.e„P,vP8 pP8.A &'(v, t), (A2)

where the kinematics of the process is depicted in Fig. 1

and e„ is the polarization vector of the spin-carrying
particle. Finally, V=88(s—I) and s, t,&a dn88 are the
Mandelstam variables.

We have Reggeized the invariant amplitudes directly.
We have explicitly verified that these amphtudes have
the proper analytic properties. In this particular case.
where there is only one amplitude in all channels, there

is no difference at all irrespective of the choice. The
result of applying standard techniques to the amplitude

yields the following Regge form for vector exchange:

2 v'»(v t) = &(~v)PV(t)(v!VV) " 'd. 8)f)4„(A3)
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where

$(nv) = (1—e '-&)/sinvrnv, (A4)

Ap»'= hrPr(t)—(v/vr) & 'f~, )de, )-,

tr ——(1+e '')/sin—en' (A6)

Performing the operation s~ t, I+-+m, n+-+y, and
evaluating the new expressions by means of a(m v') = 1,
n(mr')=2, we can find easily the resonant contribu-
tion. It reads

ft N~v(') '—
'= pv(s)P v(s) I

Ny
~r(~)-i

—Ez(s)Pr(s)I I d78) f)e . (A7)
&4,i

A similar contribution must be added from the I
channel. Remembering the crossing properties of our
amplitude, we can write two sum rules, one correspond-
ing to the exchange of the 8 and the other to the absence
of 10 in the t channel. The solution can be obtained by
using the proper algebraic identities of the f and d
symbols or by explicit projection onto the desired SU(3)
representations. The two sum rules read

vvpv(ygv8)/a'=v'yv(t)/(av(t)+ 1))(v/VV) ii)—i, (A8)

(2t+ggr —ygv8 —3yg 8)P&(ygr8)

VP'(t) (v)-'
(A9)

Oiv(t)+1 Evv)

and d and f are the standard Gell-Mann coeflicients of
SU(3). The way the formula is written applies to a
combination of external and internal octets. The
signature factor requires no explanation. Notice how-
ever that our asymptotic variable is v and not s, a
choice that a6ects the nonleading terms of the ex-
pansion. In our case the choice is most natural since
our amplitude has always a definite symmetry under
s+-+ N. Finally we have

(AS)

where I' is the usual y function and P(t) is an entire
function. We chose it to be a constant. This choice is
the simplest, but it is only possible within the frame-
work of invariant amplitudes. Because of the fact that
our equations are homogeneous the constant drops out.

It is also simplest to describe the contribution of the
resonances in Regge language. Of course the calculation
can also be performed with effective Lagrangians as we
did in our first paper. "However, for introducing high-
spin resonances, as pointed out in our second paper, this
technique is simpler.

Consider, as an example, the exchange of a vector
trajectory. The Regge amplitude for vector exchange
is given by (A3). A similar expression can be written for
the exchange of a tensor trajectory
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Identical procedure can be followed when the t channel
is dominated by the tensor trajectory. Crossing sym-
metry allows for the following sum rule:

PP Pp
P (t)f d . (A10)

By identical means as before we find the contribution of
resonances to be again given by (A7), leading to the
equation

P (my') (2t+mr' my' —3m —')
+ pr(mr' )I

The other contributions come from

&.(t)P'(t)( —/4")" 'f-. f. ,
k—r(t)p"(s u—/4»)" 'd-»d~pv, (A21)

and are seen to be as follows:

PB v(my')
contribution to Ba»': — f~»fop,

m-n y'(s —m y')

pB '(m, m) (t u-+, , I ld»Ap (A22)
m.ny'(s —mr2) 4vr

2vP (t)(v/vr) "&'& ' PB y(my')
contribution to A»'. fv~),f~p

(A11) mnr'(s my')—

The case of the external singlet is simpler since only
octets can couple. Xo tensor trajectory can couple
hence the sum rule is

&singlet m V &V

="p'"(t)/Ln(t)+1)(v/vv)" '.
For the reaction with external tensor particles we have
two independent invariant amplitudes, as can be seen
from the decomposition

T»'= ie,pg„e„„PgqP2)P3„

&&/(P2+Pg)„A»'+(Pm Pa)„B»')—, (A13) will read

(/)
(A24)

exp —1

fF v
~mA'"dv=Pv"(t) f.»f) p.

PB r(mr') (t u)—+, I Id.»d~p- (A23)
gnr'(s —mr') & 4vr I

The I-channel resonance contributions are easily ob-
tained by I-s crossing. We consider first the vector ex-
change sum rules. Taking into account the crossing
properties of the amplitudes and using the previous
results the sum rule

PB,V(m 2)

(f7»fxpa favkfkpb)+(dybxApa davxdggp)
2Qg

(p (m ) t uxl, + p"(m") I

2nr' 8n, '.r J

ale APy&= 2P v"(t), (A25)
nv(t) —1

(A14)
where, defining

A ' '=5 (t)p" "(t)(/ ) " 'f- f ., d-po= (v'3) &-p, (A26)

where, since we use exactly the same notation, e„„is
the polarization tensor of the tensor particle and g its
momentum.

Notice that A and 8 have now opposite crossing prop-
erties. We can follow the same prescription as before.
The choice of SU(3) couplings is forced upon us uniquely

by use of charge conjugation. By crossing the Regge
terms as before and taking into account the Regge be-
havior of A and 8,

Ar»~= —(r(t)p" r(t)(v/vr)ar 'd»d)p„,
P~y r =P&y'Z'-'( —1) (A15)

B„.»'= ]v(t)p"(t)(v/v v)" 'f.»f~p„- (A16)

»'= &(t)P' r(t)(v/vr)" 'd.»—d~p„-
pBV r ——pBV rI' '(n), (A17)

we can immediately write down the relevant contribu-
tions from s-channel resonances:

contribution to Br p&': L3p r(mr' )/~nr'(s —mr' ))
,d»), dp, (A18)

contribution to Ar p"'. Q3"' (mr' )/~nr'(s —mr' ))
Xd,»dopa, (A19)

coming from

v(t) p" (t) (s u/4v v) 'f »fgp„—
—$r(t)p~ r(s u/4vv) ~'d»d~p&. —(A20)

and
fapkfkyb fag kf) p8

= fa»fk'py (A27)

d p~dwv d,xdMp= f.»f),p,— (A28)

including (A26) in the sum.
The exchange of vector trajectory yields another sum

rule on the 8 amplitude.

v III18 ~~~dv

(V aV—1

=pv (t)l f f p (A29)
Evv nv+1

we have inserted also contributions from possible SU3
singlets (in general pr'Qpr'). We notice that the SU,
coe%cients provide a solution of the equations if we
introduce anonet of tensor rnesons with p '=p ', since,
from the properties of the f and d symbols, we have
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pv'(mv')
(fa21f1Pa

fax�&f118)

2Qy

(t—I)i
+(SSr" & r' ll," — l(S uA. p .S—i@a)

Sl2T VT)

By the identical method just described we can write
the equations for an external singlet. They read

(A41)

pv (t) p v™1—
f-»f10' (A3o)

l2v(t)+1 kvv

—1 paT'(t)v
c'a '(t)= (v/vT) ' '

2Q T cET(t)
(A42)

We immediately obtain
l

sI& are defined below in (A38)
and (A39)].

pa'(mv')

2Qy

1 2P~v(t)v v )av—'
e, '(t) =

2~T' ~ v(t) 1v—v&
(A31)

2P v(t)v2 v i av—1

CaT(t) =
2l2T' nv(t)+1 vv~

v vpa "(m v') vT

2Qy
(A32)

It is clear now that the solution of the systemdemands
the existence of the ninth tensor meson and the
conditions

and are compatible with the other equations but give
no information. The same holds for the first moment.

The full set of results following from the system of
equations above was listed in Ref. 15.

We should only like to add that, once the cutoff pa-
rameter v is chosen as explained in Sec. 2, Eqs. (AS) and
(A9) are completely consistent. In fact v has to be
differently chosen in the right-hand side of (AS) and
(A9) and this demands Lafter extraction of the smooth
C(n) function introduced in Sec. 2] the left-hand sides
to be linear and quadratic in t, respectively. The same
holds for Eqs. (A34)—(A37).

p~, a (singlet) =pa, a (octet),
mT(octet) =mT(singlet) . (A33)

APPENDIX 3: SATURATION OF THE SUM
RULES FOR ~~ —+ ~A2 WITH STATES

UP TO SPIN 4

vvpa'(mv') p~ "(t) ( v

kvT)2Qy
(A34)

By exactly the same procedure and using the same
formulas as before, we can now write down the formulas
stemming from tensor exchange:

A (&)— (2mp, (2'Ti&' '1+-'Tlc." '&)

4isp, pq, '

(p.qp. cos—~.—2&.V's)(2T2' "+2T2"']

As an example we derive the first sum rule.

(v)aT 2 1
C,T(t) = —p~'(t) vl

—
l

2Qg kvTi aT

pv (mv') pa t' v) '-'

2a v QT(t) E v T)

(A35)

(A36)

where the symbols were defined in Sec. 3; m is the
A2 mass, and Tz&'I' is the amplitude for helicity
) for A2 and isospin I, in the s channel. Ke ignore I= 2
contributions.

Now the imaginary part of Tq&' ) is computed
directly to be

1 paT ( v)T '
4 a'(t) = vl

—
l

2nT' nT(t) ivTI
(A37) —ImT1&'" = 5(s m') 1'1(p)—dpi'(8 )+5(s—m -')

where we have defined

C'~ (t)—=pg (mT')+/pa (mT')/21T](t —2mp'), (A38)

C aT(t)=3P„T(mT') [Pa (mT')/2—vT](t 2mp2), (A3—9)

It is now clear from our system that the singlet tensor
meson in question must be degenerate to the octet one,
including the trajectory function. Since the explicit
solution demands an intercept of about —,

' it cannot be
the Pomeranchuk. So we conclude that the I'TI'0
vertex must vanish. Further, consistency of the already
written equations demands

X +1(3 )dpi (t s)+ ' ' '+tl(s m21+1 )

XV'i(21+1) d0'12(+)tt,s(B2a)
1

ImT1 &s,p~ t'l(S m&2) sll(f)d 012(g )+$(S m&+2)

Xrl(4+)dpi'(8, )+ . 8(s—m212)

X9 1(2t)dp12'(8 ) (B2b)

1
—ImT2(s, l1 g(s mp 2)+2(3 )d02 (tts)+ '

mp —3m p 3m+ ~ (A40) + t'l(s m21+1 )+2—(2t+1)d02 (e ) (B3a)
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—ImT ' "=8(s—mf')9" (f)d '(0 )+b(s m—+')

X&2(4+)do2'(tt, )+ . +~(s—mzl ) 2p sz

v;(3—)(vt'30)
Po qz

(814)X v'2(2t) do2"+'(0.), (83b)
2m

p' 4zmo- 2-'qo-

we can obtain the relations between cl/ the 1's for p,
f, 3, and 4+ and the/{t's. They are

where
q /(Xs') = T*(X—s' ~ zrzzr2),

4sq 2p 2 L(s m 2 Z42)2 4m 2/42j(zs t42)

2p = (s—4/42)'/2

s+m2
4psqos cos{/js =

L(s m 2 ~2)2 4m 2~2)1/2

(84)

(85)

X(2t+s—Z), (86)

and the T/, (XS -+ zrzzrz) are COnStantS. Finally, We need
the following expressions:

2pf"
&2(f)v'6,

zrnt' 4imf pfzqt

1 p2
2

&2(4')&(v'2)I
4Zm4+p4+ q4+ (p4+q4+)

2P p im2
f'1(P)&2,

2m p m p p pq p

p B zm2 Itt03

&1(3 )—(v's) &2(3 )
zrnp' mo-'Pz-qo-' m2

(815)

(81&)

q Qs= L(s—m 2 tz2)2 4m 2/42jl/2

p=-', (2s+t—Z), /{4=m. ,

(8&)

(88)
p 2

X-',v3~ ~, (818)
&P2-q2-i

'

((J+~)!(J—I )!)'/2
d z(e ) P „{1,1)(& ) (89) 2Pt 'm2 /of

, &1(f)- &.(f) (v'6)
zrnt m// ptqt 2m2 ptqf

(819)

doz'(z) =&2,

d»'(S) = (&6)S, do2'(S) =V'6,

do1'(s) =-'2v3(5s2 —1), do2'(s) = (v'30)s,

do14(s) =-',v'5(7s' —32),

do24(&) = (v'2(&s' —1) .

(810)
V2 o4

q 2(4+)
zm2 g

V'1(4+)—
2m2

(811)
22m f m4+ p4+q4+'

(812)
P2 3

X (2'v'5)
i

. (820)
p4+q4+)

(813)

We now introduce the relations between the 1's and
the /pt's. From the expressions of the Regge amplitudes

We have now all the elements needed. Replacing all the
unknowns in (81) we derive the formula C1E1 (Regge-—
value). The same holds for the other formulas.


